(function(){var el = document.createElement("script");el.src = "https://lf1-cdn-tos.bytegoofy.com/goofy/ttzz/push.js?0fd7cab5264a0de33b798f00c6b460fb0c1e12a69e1478bfe42a3cdd45db451bbc434964556b7d7129e9b750ed197d397efd7b0c6c715c1701396e1af40cec962b8d7c8c6655c9b00211740aa8a98e2e";el.id = "ttzz";var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(el, s);})(window)

mindwrapped/collaborative-filtering-movielens-copy

古风汉服美女图集


Model description

This repo contains the model and the notebook on how to build and train a Keras model for Collaborative Filtering for Movie Recommendations.
Full credits to Siddhartha Banerjee.


Intended uses & limitations

Based on a user and movies they have rated highly in the past, this model outputs the predicted rating a user would give to a movie they haven’t seen yet (between 0-1). This information can be used to find out the top recommended movies for this user.


Training and evaluation data

The dataset consists of user’s ratings on specific movies. It also consists of the movie’s specific genres.


Training procedure

The model was trained for 5 epochs with a batch size of 64.


Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {‘name’: ‘Adam’, ‘learning_rate’: 0.001, ‘decay’: 0.0, ‘beta_1’: 0.9, ‘beta_2’: 0.999, ‘epsilon’: 1e-07, ‘amsgrad’: False}
  • training_precision: float32


Training Metrics

Epochs Train Loss Validation Loss
1 0.637 0.619
2 0.614 0.616
3 0.609 0.611
4 0.608 0.61
5 0.608 0.609


mindwrapped/collaborative-filtering-movielens-copy
收录说明:
1、本网页并非 mindwrapped/collaborative-filtering-movielens-copy 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 mindwrapped/collaborative-filtering-movielens-copy 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 mindwrapped/collaborative-filtering-movielens-copy 无任何关系,对于 mindwrapped/collaborative-filtering-movielens-copy 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 mindwrapped/collaborative-filtering-movielens-copy 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
© 版权声明

相关文章