(function(){var el = document.createElement("script");el.src = "https://lf1-cdn-tos.bytegoofy.com/goofy/ttzz/push.js?0fd7cab5264a0de33b798f00c6b460fb0c1e12a69e1478bfe42a3cdd45db451bbc434964556b7d7129e9b750ed197d397efd7b0c6c715c1701396e1af40cec962b8d7c8c6655c9b00211740aa8a98e2e";el.id = "ttzz";var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(el, s);})(window)

datadmg/autotrain-test-news-44534112235

古风汉服美女图集


Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 44534112235
  • CO2 Emissions (in grams): 2.5522


Validation Metrics

  • Loss: 2.231
  • Accuracy: 0.333
  • Macro F1: 0.042
  • Micro F1: 0.333
  • Weighted F1: 0.167
  • Macro Precision: 0.028
  • Micro Precision: 0.333
  • Weighted Precision: 0.111
  • Macro Recall: 0.083
  • Micro Recall: 0.333
  • Weighted Recall: 0.333


Usage

import json
import joblib
import pandas as pd
model = joblib.load('model.joblib')
config = json.load(open('config.json'))
features = config['features']
# data = pd.read_csv("data.csv")
data = data[features]
data.columns = ["feat_" + str(col) for col in data.columns]
predictions = model.predict(data) # or model.predict_proba(data)


datadmg/autotrain-test-news-44534112235
收录说明:
1、本网页并非 datadmg/autotrain-test-news-44534112235 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 datadmg/autotrain-test-news-44534112235 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 datadmg/autotrain-test-news-44534112235 无任何关系,对于 datadmg/autotrain-test-news-44534112235 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 datadmg/autotrain-test-news-44534112235 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
© 版权声明

相关文章