keras-io/TF_Decision_Trees
TensorFlow‘s Gradient Boosted Trees Model for structured data classification
Use TF’s Gradient Boosted Trees model in binary classification of structured data
- Build a decision forests model by specifying the input feature usage.
- Implement a custom Binary Target encoder as a Keras Preprocessing layer to encode the categorical features with respect to their target value co-occurrences, and then use the encoded features to build a decision forests model.
The model is implemented using Tensorflow 7.0 or higher. The US Census Income Dataset containing approximately 300k instances with 41 numerical and categorical variables was used to train it. This is a binary classification problem to determine whether a person makes over 50k a year.
Author: Khalid Salama
Adapted implementation: Tannia Dubon
Find the colab notebook at https://github.com/tdubon/TF-GB-Forest/blob/c0cf4c7e3e29d819b996cfe4eecc1f2728115e52/TFDecisionTrees_Final.ipynb
收录说明:
1、本网页并非 keras-io/TF_Decision_Trees 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 keras-io/TF_Decision_Trees 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 keras-io/TF_Decision_Trees 无任何关系,对于 keras-io/TF_Decision_Trees 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 keras-io/TF_Decision_Trees 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)
前往AI网址导航