(function(){var el = document.createElement("script");el.src = "https://lf1-cdn-tos.bytegoofy.com/goofy/ttzz/push.js?0fd7cab5264a0de33b798f00c6b460fb0c1e12a69e1478bfe42a3cdd45db451bbc434964556b7d7129e9b750ed197d397efd7b0c6c715c1701396e1af40cec962b8d7c8c6655c9b00211740aa8a98e2e";el.id = "ttzz";var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(el, s);})(window)

keras-io/imbalanced_classification

古风汉服美女图集


Model Description


Keras Implementation of Imbalanced classification: credit card fraud detection

This repo contains the trained model of Imbalanced classification: credit card fraud detection.
The full credit goes to: fchollet


Intended uses & limitations

  • The trained model is used to detect of a specific transaction is fraudulent or not.


Training dataset

  • Credit Card Fraud Detection
  • Due to the high imbalance of the target feature (417 frauds or 0.18% of total 284,807 samples), training weight was applied to reduce the False Negatives to the lowest level as possible.


Training procedure


Training hyperparameter

The following hyperparameters were used during training:

  • optimizer: ‘Adam’
  • learning_rate: 0.01
  • loss: ‘binary_crossentropy’
  • epochs: 30
  • batch_size: 2048
  • beta_1: 0.9
  • beta_2: 0.999
  • epsilon: 1e-07
  • training_precision: float32


Training Metrics

Epochs Train Loss Train Fn Train Fp Train Tn Train Tp Train Precision Train Recall Validation Loss Validation Fn Validation Fp Validation Tn Validation Tp Validation Precision Validation Recall
1 0.0 14.0 6202.0 221227.0 403.0 0.061 0.966 0.043 9.0 622.0 56264.0 66.0 0.096 0.88
2 0.0 3.0 3514.0 223915.0 414.0 0.105 0.993 0.025 10.0 528.0 56358.0 65.0 0.11 0.867
3 0.0 2.0 2419.0 225010.0 415.0 0.146 0.995 0.014 11.0 283.0 56603.0 64.0 0.184 0.853
4 0.0 3.0 2482.0 224947.0 414.0 0.143 0.993 0.027 11.0 340.0 56546.0 64.0 0.158 0.853
5 0.0 2.0 2295.0 225134.0 415.0 0.153 0.995 0.034 11.0 245.0 56641.0 64.0 0.207 0.853
6 0.0 3.0 2239.0 225190.0 414.0 0.156 0.993 0.037 10.0 495.0 56391.0 65.0 0.116 0.867
7 0.0 2.0 3095.0 224334.0 415.0 0.118 0.995 0.011 11.0 194.0 56692.0 64.0 0.248 0.853
8 0.0 4.0 1844.0 225585.0 413.0 0.183 0.99 0.035 9.0 429.0 56457.0 66.0 0.133 0.88
9 0.0 1.0 2119.0 225310.0 416.0 0.164 0.998 0.012 11.0 167.0 56719.0 64.0 0.277 0.853
10 0.0 3.0 1539.0 225890.0 414.0 0.212 0.993 0.013 13.0 144.0 56742.0 62.0 0.301 0.827
11 0.0 6.0 3444.0 223985.0 411.0 0.107 0.986 0.039 11.0 394.0 56492.0 64.0 0.14 0.853
12 0.0 4.0 3818.0 223611.0 413.0 0.098 0.99 0.03 9.0 523.0 56363.0 66.0 0.112 0.88
13 0.0 7.0 4482.0 222947.0 410.0 0.084 0.983 0.059 6.0 1364.0 55522.0 69.0 0.048 0.92
14 0.0 2.0 3064.0 224365.0 415.0 0.119 0.995 0.033 9.0 699.0 56187.0 66.0 0.086 0.88
15 0.0 4.0 3563.0 223866.0 413.0 0.104 0.99 0.066 8.0 956.0 55930.0 67.0 0.065 0.893
16 0.0 4.0 2536.0 224893.0 413.0 0.14 0.99 0.016 9.0 339.0 56547.0 66.0 0.163 0.88
17 0.0 6.0 2594.0 224835.0 411.0 0.137 0.986 0.049 8.0 821.0 56065.0 67.0 0.075 0.893
18 0.0 1.0 1911.0 225518.0 416.0 0.179 0.998 0.013 8.0 215.0 56671.0 67.0 0.238 0.893
19 0.0 2.0 1457.0 225972.0 415.0 0.222 0.995 0.018 7.0 342.0 56544.0 68.0 0.166 0.907
20 0.0 0.0 1132.0 226297.0 417.0 0.269 1.0 0.011 10.0 172.0 56714.0 65.0 0.274 0.867
21 0.0 1.0 840.0 226589.0 416.0 0.331 0.998 0.008 11.0 100.0 56786.0 64.0 0.39 0.853
22 0.0 1.0 2124.0 225305.0 416.0 0.164 0.998 0.075 10.0 350.0 56536.0 65.0 0.157 0.867
23 0.0 2.0 1457.0 225972.0 415.0 0.222 0.995 0.03 11.0 242.0 56644.0 64.0 0.209 0.853
24 0.0 5.0 2761.0 224668.0 412.0 0.13 0.988 0.297 6.0 2741.0 54145.0 69.0 0.025 0.92
25 0.0 3.0 2484.0 224945.0 414.0 0.143 0.993 0.025 10.0 199.0 56687.0 65.0 0.246 0.867
26 0.0 4.0 4867.0 222562.0 413.0 0.078 0.99 0.021 18.0 33.0 56853.0 57.0 0.633 0.76
27 0.0 8.0 4230.0 223199.0 409.0 0.088 0.981 0.053 9.0 1541.0 55345.0 66.0 0.041 0.88
28 0.0 9.0 5305.0 222124.0 408.0 0.071 0.978 0.026 9.0 398.0 56488.0 66.0 0.142 0.88
29 0.0 5.0 4846.0 222583.0 412.0 0.078 0.988 0.242 6.0 7883.0 49003.0 69.0 0.009 0.92
30 0.0 5.0 5193.0 222236.0 412.0 0.074 0.988 0.026 7.0 449.0 56437.0 68.0 0.132 0.907


keras-io/imbalanced_classification
收录说明:
1、本网页并非 keras-io/imbalanced_classification 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 keras-io/imbalanced_classification 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 keras-io/imbalanced_classification 无任何关系,对于 keras-io/imbalanced_classification 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 keras-io/imbalanced_classification 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
© 版权声明

相关文章