(function(){var el = document.createElement("script");el.src = "https://lf1-cdn-tos.bytegoofy.com/goofy/ttzz/push.js?0fd7cab5264a0de33b798f00c6b460fb0c1e12a69e1478bfe42a3cdd45db451bbc434964556b7d7129e9b750ed197d397efd7b0c6c715c1701396e1af40cec962b8d7c8c6655c9b00211740aa8a98e2e";el.id = "ttzz";var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(el, s);})(window)

matth/flowformer

古风汉服美女图集


Flowformer

Automatic detection of blast cells in ALL data using transformers.
Official implementation of our work: “Automated Identification of Cell Populations in Flow Cytometry Data with Transformers“
by Matthias Wödlinger, Michael Reiter, Lisa Weijler, Margarita Maurer-Granofszky, Angela Schumich, Elisa O Sajaroff, Stefanie Groeneveld-Krentz, Jorge G Rossi, Leonid Karawajew, Richard Ratei and Michael Dworzak


Load the model

Load the pretrained model from huggingface
from transformers import AutoModel
flowformer = AutoModel.from_pretrained("matth/flowformer", trust_remote_code=True)

trust_remote_code=True is necessary because the model code uses a custom architecture.


Usage

The model expects as input a pytorch tensor x with shape batch_size x num_cells x num_markers.
The pretrained model is trained with the the markers: TIME, FSC-A, FSC-W, SSC-A, CD20, CD10, CD45, CD34, CD19, CD38, SY41. If you use different markers (or a different ordering of markers), you need to specify this by setting the markers kwarg in the model forward pass:
output = flowformer(x, markers=["Marker1", "Marker2", "Marker3"])

For more information about model usage as well as hands-on examples check out this demo notebook from my colleague Florian Kowarsch: https://github.com/CaRniFeXeR/python4FCM_Examples/blob/main/hyperflow2023.ipynb


Citation

If you use this project please consider citing our work
@article{wodlinger2022automated,
title={Automated identification of cell populations in flow cytometry data with transformers},
author={Wödlinger, Matthias and Reiter, Michael and Weijler, Lisa and Maurer-Granofszky, Margarita and Schumich, Angela and Sajaroff, Elisa O and Groeneveld-Krentz, Stefanie and Rossi, Jorge G and Karawajew, Leonid and Ratei, Richard and others},
journal={Computers in Biology and Medicine},
volume={144},
pages={105314},
year={2022},
publisher={Elsevier}
}



license: cc-by-nc-nd-4.0


matth/flowformer
收录说明:
1、本网页并非 matth/flowformer 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 matth/flowformer 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 matth/flowformer 无任何关系,对于 matth/flowformer 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 matth/flowformer 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
© 版权声明

相关文章