(function(){var el = document.createElement("script");el.src = "https://lf1-cdn-tos.bytegoofy.com/goofy/ttzz/push.js?0fd7cab5264a0de33b798f00c6b460fb0c1e12a69e1478bfe42a3cdd45db451bbc434964556b7d7129e9b750ed197d397efd7b0c6c715c1701396e1af40cec962b8d7c8c6655c9b00211740aa8a98e2e";el.id = "ttzz";var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(el, s);})(window)

Lurunchik/nf-cats

古风汉服美女图集


Non Factoid Question Category classification in English


NFQA model

Repository: https://github.com/Lurunchik/NF-CATS
Model trained with NFQA dataset. Base model is roberta-base-squad2, a RoBERTa-based model for the task of Question Answering, fine-tuned using the SQuAD2.0 dataset.
Uses NOT-A-QUESTION, FACTOID, DEBATE, EVIDENCE-BASED, INSTRUCTION, REASON, EXPERIENCE, COMPARISON labels.


How to use NFQA cat with HuggingFace


Load NFQA cat and its tokenizer:

from transformers import AutoTokenizer
from nfqa_model import RobertaNFQAClassification
nfqa_model = RobertaNFQAClassification.from_pretrained("Lurunchik/nf-cats")
nfqa_tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")


Make prediction using helper function:

def get_nfqa_category_prediction(text):
output = nfqa_model(**nfqa_tokenizer(text, return_tensors="pt"))
index = output.logits.argmax()
return nfqa_model.config.id2label[int(index)]
get_nfqa_category_prediction('how to assign category?')
# result
#'INSTRUCTION'


Demo

You can test the model via hugginface space.


Citation

If you use NFQA-cats in your work, please cite this paper
@misc{bolotova2022nfcats,
author = {Bolotova, Valeriia and Blinov, Vladislav and Scholer, Falk and Croft, W. Bruce and Sanderson, Mark},
title = {A Non-Factoid Question-Answering Taxonomy},
year = {2022},
isbn = {9781450387323},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3477495.3531926},
doi = {10.1145/3477495.3531926},
booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {1196–1207},
numpages = {12},
keywords = {question taxonomy, non-factoid question-answering, editorial study, dataset analysis},
location = {Madrid, Spain},
series = {SIGIR '22}
}

Enjoy! 🤗


Lurunchik/nf-cats
收录说明:
1、本网页并非 Lurunchik/nf-cats 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 Lurunchik/nf-cats 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 Lurunchik/nf-cats 无任何关系,对于 Lurunchik/nf-cats 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 Lurunchik/nf-cats 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
© 版权声明

相关文章