(function(){var el = document.createElement("script");el.src = "https://lf1-cdn-tos.bytegoofy.com/goofy/ttzz/push.js?0fd7cab5264a0de33b798f00c6b460fb0c1e12a69e1478bfe42a3cdd45db451bbc434964556b7d7129e9b750ed197d397efd7b0c6c715c1701396e1af40cec962b8d7c8c6655c9b00211740aa8a98e2e";el.id = "ttzz";var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(el, s);})(window)

cardiffnlp/twitter-roberta-base-sentiment-latest

古风汉服美女图集


Twitter-roBERTa-base for Sentiment Analysis – UPDATED (2022)

This is a RoBERTa-base model trained on ~124M tweets from January 2018 to December 2021, and finetuned for sentiment analysis with the TweetEval benchmark.
The original Twitter-based RoBERTa model can be found here and the original reference paper is TweetEval. This model is suitable for English.

  • Reference Paper: TimeLMs paper.
  • Git Repo: TimeLMs official repository.

Labels:
0 -> Negative;
1 -> Neutral;
2 -> Positive
This sentiment analysis model has been integrated into TweetNLP. You can access the demo here.


Example Pipeline

from transformers import pipeline
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Covid cases are increasing fast!")

[{'label': 'Negative', 'score': 0.7236}]


Full classification example

from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
#model.save_pretrained(MODEL)
text = "Covid cases are increasing fast!"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)
# text = "Covid cases are increasing fast!"
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) {l} {np.round(float(s), 4)}")

Output:
1) Negative 0.7236
2) Neutral 0.2287
3) Positive 0.0477


cardiffnlp/twitter-roberta-base-sentiment-latest
收录说明:
1、本网页并非 cardiffnlp/twitter-roberta-base-sentiment-latest 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 cardiffnlp/twitter-roberta-base-sentiment-latest 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 cardiffnlp/twitter-roberta-base-sentiment-latest 无任何关系,对于 cardiffnlp/twitter-roberta-base-sentiment-latest 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 cardiffnlp/twitter-roberta-base-sentiment-latest 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
© 版权声明

相关文章