sb3/ppo-BreakoutNoFrameskip-v4
PPO Agent playing BreakoutNoFrameskip-v4
This is a trained model of a PPO agent playing BreakoutNoFrameskip-v4
using the stable-baselines3 library
and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env BreakoutNoFrameskip-v4 -orga sb3 -f logs/
python enjoy.py --algo ppo --env BreakoutNoFrameskip-v4 -f logs/
Training (with the RL Zoo)
python train.py --algo ppo --env BreakoutNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env BreakoutNoFrameskip-v4 -f logs/ -orga sb3
Hyperparameters
OrderedDict([('batch_size', 256),
('clip_range', 'lin_0.1'),
('ent_coef', 0.01),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('frame_stack', 4),
('learning_rate', 'lin_2.5e-4'),
('n_envs', 8),
('n_epochs', 4),
('n_steps', 128),
('n_timesteps', 10000000.0),
('policy', 'CnnPolicy'),
('vf_coef', 0.5),
('normalize', False)])
收录说明:
1、本网页并非 sb3/ppo-BreakoutNoFrameskip-v4 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 sb3/ppo-BreakoutNoFrameskip-v4 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 sb3/ppo-BreakoutNoFrameskip-v4 无任何关系,对于 sb3/ppo-BreakoutNoFrameskip-v4 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 sb3/ppo-BreakoutNoFrameskip-v4 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)
前往AI网址导航