(function(){var el = document.createElement("script");el.src = "https://lf1-cdn-tos.bytegoofy.com/goofy/ttzz/push.js?0fd7cab5264a0de33b798f00c6b460fb0c1e12a69e1478bfe42a3cdd45db451bbc434964556b7d7129e9b750ed197d397efd7b0c6c715c1701396e1af40cec962b8d7c8c6655c9b00211740aa8a98e2e";el.id = "ttzz";var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(el, s);})(window)

j-hartmann/emotion-english-distilroberta-base

古风汉服美女图集


Emotion English DistilRoBERTa-base


Description ℹ

With this model, you can classify emotions in English text data. The model was trained on 6 diverse datasets (see Appendix below) and predicts Ekman’s 6 basic emotions, plus a neutral class:

  1. anger 🤬
  2. disgust 🤢
  3. fear
  4. joy
  5. neutral
  6. sadness
  7. surprise

The model is a fine-tuned checkpoint of DistilRoBERTa-base. For a ‘non-distilled’ emotion model, please refer to the model card of the RoBERTa-large version.


Application

a) Run emotion model with 3 lines of code on single text example using Hugging Face’s pipeline command on Google Colab:

from transformers import pipeline
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
classifier("I love this!")

Output:
[[{'label': 'anger', 'score': 0.004419783595949411},
{'label': 'disgust', 'score': 0.0016119900392368436},
{'label': 'fear', 'score': 0.0004138521908316761},
{'label': 'joy', 'score': 0.9771687984466553},
{'label': 'neutral', 'score': 0.005764586851000786},
{'label': 'sadness', 'score': 0.002092392183840275},
{'label': 'surprise', 'score': 0.008528684265911579}]]

b) Run emotion model on multiple examples and full datasets (e.g., .csv files) on Google Colab:


Contact

Please reach out to jochen.hartmann@tum.de if you have any questions or feedback.
Thanks to Samuel Domdey and chrsiebert for their support in making this model available.


Reference

For attribution, please cite the following reference if you use this model. A working paper will be available soon.
Jochen Hartmann, "Emotion English DistilRoBERTa-base". https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/, 2022.

BibTex citation:
@misc{hartmann2022emotionenglish,
author={Hartmann, Jochen},
title={Emotion English DistilRoBERTa-base},
year={2022},
howpublished = {\url{https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/}},
}


Appendix

Please find an overview of the datasets used for training below. All datasets contain English text. The table summarizes which emotions are available in each of the datasets. The datasets represent a diverse collection of text types. Specifically, they contain emotion labels for texts from Twitter, Reddit, student self-reports, and utterances from TV dialogues. As MELD (Multimodal EmotionLines Dataset) extends the popular EmotionLines dataset, EmotionLines itself is not included here.

Name anger disgust fear joy neutral sadness surprise
Crowdflower (2016) Yes Yes Yes Yes Yes
Emotion Dataset, Elvis et al. (2018) Yes Yes Yes Yes Yes
GoEmotions, Demszky et al. (2020) Yes Yes Yes Yes Yes Yes Yes
ISEAR, Vikash (2018) Yes Yes Yes Yes Yes
MELD, Poria et al. (2019) Yes Yes Yes Yes Yes Yes Yes
SemEval-2018, EI-reg, Mohammad et al. (2018) Yes Yes Yes Yes


j-hartmann/emotion-english-distilroberta-base
收录说明:
1、本网页并非 j-hartmann/emotion-english-distilroberta-base 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 j-hartmann/emotion-english-distilroberta-base 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 j-hartmann/emotion-english-distilroberta-base 无任何关系,对于 j-hartmann/emotion-english-distilroberta-base 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 j-hartmann/emotion-english-distilroberta-base 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
© 版权声明

相关文章