(function(){var el = document.createElement("script");el.src = "https://lf1-cdn-tos.bytegoofy.com/goofy/ttzz/push.js?0fd7cab5264a0de33b798f00c6b460fb0c1e12a69e1478bfe42a3cdd45db451bbc434964556b7d7129e9b750ed197d397efd7b0c6c715c1701396e1af40cec962b8d7c8c6655c9b00211740aa8a98e2e";el.id = "ttzz";var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(el, s);})(window)

martin-ha/toxic-comment-model

古风汉服美女图集


Model description

This model is a fine-tuned version of the DistilBERT model to classify toxic comments.


How to use

You can use the model with the following code.
from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline
model_path = "martin-ha/toxic-comment-model"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
pipeline = TextClassificationPipeline(model=model, tokenizer=tokenizer)
print(pipeline('This is a test text.'))


Limitations and Bias

This model is intended to use for classify toxic online classifications. However, one limitation of the model is that it performs poorly for some comments that mention a specific identity subgroup, like Muslim. The following table shows a evaluation score for different identity group. You can learn the specific meaning of this metrics here. But basically, those metrics shows how well a model performs for a specific group. The larger the number, the better.

subgroup subgroup_size subgroup_auc bpsn_auc bnsp_auc
muslim 108 0.689 0.811 0.88
jewish 40 0.749 0.86 0.825
homosexual_gay_or_lesbian 56 0.795 0.706 0.972
black 84 0.866 0.758 0.975
white 112 0.876 0.784 0.97
female 306 0.898 0.887 0.948
christian 231 0.904 0.917 0.93
male 225 0.922 0.862 0.967
psychiatric_or_mental_illness 26 0.924 0.907 0.95


martin-ha/toxic-comment-model
收录说明:
1、本网页并非 martin-ha/toxic-comment-model 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 martin-ha/toxic-comment-model 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 martin-ha/toxic-comment-model 无任何关系,对于 martin-ha/toxic-comment-model 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 martin-ha/toxic-comment-model 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
© 版权声明

相关文章