(function(){var el = document.createElement("script");el.src = "https://lf1-cdn-tos.bytegoofy.com/goofy/ttzz/push.js?0fd7cab5264a0de33b798f00c6b460fb0c1e12a69e1478bfe42a3cdd45db451bbc434964556b7d7129e9b750ed197d397efd7b0c6c715c1701396e1af40cec962b8d7c8c6655c9b00211740aa8a98e2e";el.id = "ttzz";var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(el, s);})(window)

sayakpaul/glpn-nyu-finetuned-diode-221228-072509

古风汉服美女图集


glpn-nyu-finetuned-diode-221228-072509

This model is a fine-tuned version of vinvino02/glpn-nyu on the diode-subset dataset.
It achieves the following results on the evaluation set:

  • Loss: 0.4012
  • Mae: 0.4030
  • Rmse: 0.6173
  • Abs Rel: 0.3487
  • Log Mae: 0.1574
  • Log Rmse: 0.2110
  • Delta1: 0.4308
  • Delta2: 0.6997
  • Delta3: 0.8249


Model description

More information needed


Intended uses & limitations

More information needed


Training and evaluation data

More information needed


Training procedure


Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 48
  • seed: 2022
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • num_epochs: 50
  • mixed_precision_training: Native AMP


Training results

Training Loss Epoch Step Validation Loss Mae Rmse Abs Rel Log Mae Log Rmse Delta1 Delta2 Delta3
1.1571 1.0 72 0.6604 0.6233 0.8403 0.5125 0.3119 0.3691 0.1726 0.3423 0.4877
0.4895 2.0 144 0.4506 0.4460 0.6404 0.4241 0.1812 0.2299 0.3325 0.6053 0.7943
0.4709 3.0 216 0.4414 0.4370 0.6305 0.4243 0.1764 0.2253 0.3537 0.6145 0.7988
0.4436 4.0 288 0.4335 0.4324 0.6285 0.4045 0.1746 0.2245 0.3444 0.6506 0.8096
0.4656 5.0 360 0.4552 0.4515 0.6328 0.4614 0.1838 0.2307 0.3374 0.5762 0.7722
0.4482 6.0 432 0.4234 0.4166 0.6233 0.3805 0.1654 0.2179 0.4035 0.6623 0.8130
0.4099 7.0 504 0.4176 0.4185 0.6238 0.3676 0.1662 0.2150 0.3937 0.6589 0.8153
0.3987 8.0 576 0.4515 0.4431 0.6300 0.4497 0.1792 0.2283 0.3561 0.5906 0.7781
0.396 9.0 648 0.4235 0.4267 0.6347 0.3591 0.1716 0.2224 0.3934 0.6310 0.7963
0.3608 10.0 720 0.4312 0.4181 0.6227 0.4022 0.1666 0.2217 0.4014 0.6586 0.8173
0.3568 11.0 792 0.4322 0.4198 0.6183 0.4047 0.1674 0.2186 0.3870 0.6420 0.8071
0.3923 12.0 864 0.4225 0.4196 0.6294 0.3630 0.1668 0.2181 0.3910 0.6537 0.8151
0.3971 13.0 936 0.4086 0.4105 0.6219 0.3541 0.1614 0.2144 0.4234 0.6820 0.8144
0.372 14.0 1008 0.4127 0.4099 0.6172 0.3668 0.1612 0.2119 0.4046 0.6727 0.8260
0.3884 15.0 1080 0.4060 0.4074 0.6176 0.3528 0.1598 0.2119 0.4109 0.6925 0.8225
0.3616 16.0 1152 0.4078 0.4092 0.6198 0.3532 0.1615 0.2139 0.4162 0.6791 0.8186
0.3504 17.0 1224 0.4202 0.4320 0.6408 0.3613 0.1740 0.2261 0.3769 0.6301 0.7915
0.3823 18.0 1296 0.4328 0.4218 0.6182 0.4198 0.1684 0.2207 0.3916 0.6371 0.8113
0.3437 19.0 1368 0.4133 0.4138 0.6205 0.3638 0.1636 0.2162 0.3967 0.6761 0.8188
0.3739 20.0 1440 0.4040 0.4070 0.6187 0.3486 0.1594 0.2124 0.4214 0.6813 0.8214
0.3397 21.0 1512 0.4180 0.4300 0.6360 0.3601 0.1732 0.2239 0.3708 0.6362 0.8006
0.332 22.0 1584 0.4025 0.4050 0.6182 0.3505 0.1582 0.2114 0.4274 0.6909 0.8275
0.3552 23.0 1656 0.4120 0.4179 0.6305 0.3569 0.1650 0.2188 0.4002 0.6753 0.8102
0.3804 24.0 1728 0.4093 0.4111 0.6223 0.3594 0.1620 0.2152 0.4068 0.6851 0.8166
0.3519 25.0 1800 0.4039 0.4122 0.6237 0.3511 0.1621 0.2137 0.4109 0.6895 0.8171
0.3276 26.0 1872 0.4044 0.4117 0.6183 0.3533 0.1623 0.2127 0.3979 0.6824 0.8251
0.3167 27.0 1944 0.4091 0.4099 0.6189 0.3600 0.1613 0.2135 0.4069 0.6898 0.8218
0.3547 28.0 2016 0.4051 0.4055 0.6192 0.3521 0.1586 0.2119 0.4216 0.6921 0.8256
0.3297 29.0 2088 0.4025 0.4091 0.6215 0.3500 0.1605 0.2126 0.4155 0.6960 0.8224
0.3305 30.0 2160 0.4040 0.4045 0.6171 0.3507 0.1584 0.2120 0.4281 0.6938 0.8255
0.34 31.0 2232 0.4036 0.4082 0.6194 0.3492 0.1606 0.2132 0.4196 0.6851 0.8207
0.3507 32.0 2304 0.4057 0.4120 0.6245 0.3482 0.1619 0.2148 0.4195 0.6777 0.8172
0.3617 33.0 2376 0.4036 0.4098 0.6241 0.3477 0.1606 0.2141 0.4219 0.6871 0.8186
0.3268 34.0 2448 0.4015 0.4060 0.6197 0.3440 0.1593 0.2122 0.4326 0.6868 0.8211
0.3188 35.0 2520 0.4018 0.4032 0.6154 0.3504 0.1575 0.2107 0.4306 0.6952 0.8250
0.3286 36.0 2592 0.4046 0.4103 0.6237 0.3507 0.1611 0.2139 0.4179 0.6883 0.8173
0.3279 37.0 2664 0.3995 0.3993 0.6118 0.3460 0.1558 0.2091 0.4401 0.6979 0.8272
0.3439 38.0 2736 0.4052 0.4063 0.6196 0.3555 0.1590 0.2117 0.4207 0.6972 0.8256
0.3188 39.0 2808 0.4028 0.4028 0.6176 0.3482 0.1574 0.2112 0.4351 0.6916 0.8253
0.3334 40.0 2880 0.4059 0.4093 0.6218 0.3534 0.1607 0.2137 0.4201 0.6885 0.8217
0.3393 41.0 2952 0.4043 0.4048 0.6193 0.3492 0.1584 0.2118 0.4300 0.6906 0.8246
0.3099 42.0 3024 0.4029 0.4041 0.6161 0.3499 0.1583 0.2118 0.4274 0.6966 0.8239
0.3339 43.0 3096 0.4032 0.4056 0.6213 0.3515 0.1584 0.2122 0.4257 0.6995 0.8239
0.3086 44.0 3168 0.4024 0.4049 0.6173 0.3509 0.1586 0.2120 0.4243 0.6994 0.8227
0.3262 45.0 3240 0.4007 0.4035 0.6185 0.3467 0.1575 0.2112 0.4304 0.6994 0.8246
0.3265 46.0 3312 0.4017 0.4033 0.6170 0.3495 0.1574 0.2110 0.4271 0.7043 0.8247
0.3324 47.0 3384 0.4015 0.4056 0.6192 0.3471 0.1587 0.2119 0.4281 0.6944 0.8220
0.3159 48.0 3456 0.4012 0.4036 0.6156 0.3487 0.1581 0.2114 0.4279 0.6982 0.8234
0.3238 49.0 3528 0.4017 0.4024 0.6161 0.3499 0.1571 0.2106 0.4304 0.7008 0.8255
0.3112 50.0 3600 0.4012 0.4030 0.6173 0.3487 0.1574 0.2110 0.4308 0.6997 0.8249


sayakpaul/glpn-nyu-finetuned-diode-221228-072509
收录说明:
1、本网页并非 sayakpaul/glpn-nyu-finetuned-diode-221228-072509 官网网址页面,此页面内容编录于互联网,只作展示之用;
2、如果有与 sayakpaul/glpn-nyu-finetuned-diode-221228-072509 相关业务事宜,请访问其网站并获取联系方式;
3、本站与 sayakpaul/glpn-nyu-finetuned-diode-221228-072509 无任何关系,对于 sayakpaul/glpn-nyu-finetuned-diode-221228-072509 网站中的信息,请用户谨慎辨识其真伪。
4、本站收录 sayakpaul/glpn-nyu-finetuned-diode-221228-072509 时,此站内容访问正常,如遇跳转非法网站,有可能此网站被非法入侵或者已更换新网址,导致旧网址被非法使用,
5、如果你是网站站长或者负责人,不想被收录请邮件删除:i-hu#Foxmail.com (#换@)

前往AI网址导航
© 版权声明

相关文章